

**GCE AS/A level** 

0984/01

# MATHEMATICS – S2 Statistics

P.M. THURSDAY, 12 June 2014

1 hour 30 minutes

## ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator;
- statistical tables (Murdoch and Barnes or RND/WJEC Publications).

### **INSTRUCTIONS TO CANDIDATES**

Use black ink or black ball-point pen.

Answer **all** questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

#### **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers. **1.** The times taken, in minutes, for trains to travel between two stations on a particular day were recorded and are given below.

48.2 49.4 56.2 44.6 47.3 55.2 50.8 53.9

It may be assumed that this is a random sample from a normal distribution with mean  $\mu$  mins and standard deviation 4 mins. Determine a 90% confidence interval for  $\mu$ . [6]

- 2. The weights of the oranges sold on a market stall are normally distributed with mean 248 grams and standard deviation 8 grams. The weights of the lemons sold on the market stall are normally distributed with mean 85 grams and standard deviation 1.5 grams.
  - (a) Find the upper quartile of the weights of the lemons. [2]
  - (b) Ann buys 8 oranges. Calculate the probability that the total weight of her oranges is less than 2000 grams. [5]
  - (c) Bethan buys 1 orange and 1 lemon. Calculate the probability that the weight of her orange is more than three times the weight of her lemon. [7]
- **3.** A new species of animal has been found on an uninhabited island. A zoologist wishes to investigate whether or not there is a difference in the mean weights of males and females of the species. She traps some of the animals and weighs them with the following results.

| Males (kg)   | 5·3, 4·6, 5·2, 4·5, 4·3, 5·5, 5·0, 4·8           |
|--------------|--------------------------------------------------|
| Females (kg) | 4.9, 5.0, 4.1, 4.6, 4.3, 5.3, 4.2, 4.5, 4.8, 4.9 |

You may assume that these are random samples from normal populations with a common standard deviation of  $0.5 \, \text{kg}$ .

- (a) State suitable hypotheses for this investigation. [1]
- (b) Determine the *p*-value of these results and state your conclusion in context. [9]
- **4.** Gwilym buys a new computer game. He claims that he wins, on average, 60% of games played. His friend Huw believes that Gwilym wins less than 60% of games played.
  - (a) To investigate these conflicting claims, Gwilym plays the game 20 times and wins 7 of them.
    - (i) State suitable hypotheses for testing these claims.
    - (ii) Determine the *p*-value of the above result and state your conclusion in context. [7]
  - (b) During the following week, Gwilym plays the game 80 times and wins 37 of them. Use a suitable approximation to determine the *p*-value and state your conclusion in context. [7]

**5.** The random variables *X* and *Y* are independent observations from the binomial distribution B(6, 0.2). Given that U = XY, determine the value of

(a) 
$$E(U)$$
, [2]

6. When John types a page of a document, the number of errors can be modelled by a Poisson distribution with mean  $\mu$ . He claims that the value of  $\mu$  is 1.5 but his employer wants to test this claim so they define the following hypotheses.

$$H_0: \mu = 1.5; \quad H_1: \mu \neq 1.5$$

- (a) John is asked to type a 10-page document and the critical region is taken as  $x \le 10$  or  $x \ge 20$ , where x denotes the total number of errors in the document.
  - (i) Find the significance level of this test.
  - (ii) Find the probability of incorrectly accepting  $H_0$  when the value of  $\mu$  is actually 1.0.
- (b) John now types a 50-page document and makes 92 errors. Find the *p*-value and state your conclusion. [6]
- 7. The sides of a square are of length L cm and its area is  $A \text{ cm}^2$ . Given that A is uniformly distributed on the interval [15, 20], find

| (a) | $P(L \leq 4),$         | [3] |
|-----|------------------------|-----|
| (b) | <b>E</b> ( <i>L</i> ), | [4] |
| (C) | Var(L).                | [3] |

#### **END OF PAPER**

[6]

1·0. [7]